首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   483篇
  免费   13篇
  国内免费   3篇
安全科学   30篇
废物处理   24篇
环保管理   116篇
综合类   26篇
基础理论   112篇
环境理论   1篇
污染及防治   137篇
评价与监测   15篇
社会与环境   15篇
灾害及防治   23篇
  2022年   2篇
  2021年   3篇
  2020年   11篇
  2019年   4篇
  2018年   11篇
  2017年   5篇
  2016年   13篇
  2015年   14篇
  2014年   14篇
  2013年   41篇
  2012年   17篇
  2011年   22篇
  2010年   16篇
  2009年   21篇
  2008年   17篇
  2007年   23篇
  2006年   19篇
  2005年   14篇
  2004年   13篇
  2003年   16篇
  2002年   26篇
  2001年   7篇
  2000年   10篇
  1999年   8篇
  1998年   10篇
  1997年   7篇
  1996年   10篇
  1995年   4篇
  1994年   7篇
  1993年   9篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   11篇
  1981年   8篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1971年   3篇
排序方式: 共有499条查询结果,搜索用时 31 毫秒
11.
12.
On November 22, 2006 the largest explosion in the history of Massachusetts occurred in Danvers, MA at approximately 2:46 am. This paper presents a detailed analysis into the potential causes and lessons learned from the Danvers explosion. Other investigative groups concluded that the cause of the explosion was an overheated production tank. However, the analyses presented here demonstrate that their proposed scenario could not have occurred and that other potential causes are more likely.Using the computational fluid dynamics tool FLACS, it was possible to investigate the chain of events leading to the explosion, including: (1) evaluating various leak scenarios by modeling the dispersion and mixing of gases and vapors within the facility, (2) evaluating potential ignition sources within the facility of the flammable fuel–air mixture, and (3) evaluating the explosion itself by comparing the resulting overpressures of the exploding fuel–air cloud with the structural response of the facility and the observed near-field and far-field blast damage. These results, along with key witness statements and other analyses, provide valuable insight into the likely cause of this incident. Based on the results of our detailed analysis, lessons learned regarding the investigative procedure and methods for mitigating this and future explosions are discussed.  相似文献   
13.
The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science–policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.  相似文献   
14.
Explosions will, in most cases, generate blast waves. While simple models (e.g., Multi Energy Method) are useful for simple explosion geometries, most practical explosions are far from trivial and require detailed analyses. For a reliable estimate of the blast from a gas explosion it is necessary to know the explosion strength. The source explosion may not be symmetric; the pressure waves will be reflected or deflected when hitting objects, or even worse, the blast waves may propagate inside buildings or tunnels with a very low rate of decay. The use of computational fluid dynamics (CFD) explosion models for near and far field blast wave predictions has many advantages. These include more precise estimates of the energy and resulting pressure of the blast wave, as well as the ability to evaluate non-symmetrical effects caused by realistic geometries, gas cloud variations and ignition locations. This is essential when evaluating the likelihood of a given leak source as cause of an explosion or equally when evaluating the potential risk associated with a given leak source for a consequence analysis.In addition, unlike simple methods, CFD explosion models can also evaluate detailed dynamic effects in the near and far field, which include time dependent pressure loads as well as reflection and focusing of the blast waves. This is particularly valuable when assessing actual near-field blast damage during an explosion investigation or potential near-field damage during a risk analysis for a facility. One main challenge in applying CFD, however, is that these models require more information about the actual facility, including geometry details and process information. Collecting the necessary geometry and process data may be quite time consuming. This paper will show some blast prediction validation examples for the CFD model FLACS. It will also provide examples of how directional effects or interaction with objects can significantly influence the dynamics of the blast wave. Finally, the challenge of obtaining useful predictions with insufficient details regarding the geometry will also be addressed.  相似文献   
15.
Environmental Science and Pollution Research - The photo-Fenton process was performed with four radiation settings to treat clinical analysis laboratory wastewater (CALWW) from a hospital, with the...  相似文献   
16.
Caribbean pine, an economically important tree of tropical lowlands, is at risk of SO2 exposure in certain locales. Twenty-week old seedlings of Caribbean, Scots, and Virginia pine were exposed to 0.5, 1.0, and 2.0 ppm SO2 (1300, 2600, and 5200 μm?3, respectively) for 1, 2, 4, and 8 h in modified controlled-environment chambers. Severity of SO2-induced leaf necrosis for each species was related to SO2 concentration and exposure duration using a regression model. The three dose-response relationships differed in detail, but Caribbean pine seedlings were generally as sensitive to SO2 as seedlings of the two highly sensitive temperate species. In addition, 173 4-wk-old Caribbean pine seedlings were exposed to 0.5 ppm SO2 for 4 h. Over one-half of these seedlings exhibited some necrosis and over one-sixth had more than 5 percent of leaf surface necrotic. It is concluded that Caribbean pine seedlings are highly sensitive to acute doses of SO2.  相似文献   
17.
The objective of this study was to determine if the incidence or severity of foliar injury induced by regional, ambient ozone was influenced by local emissions from a complex of coal-burning power plants in southwestern Pennsylvania. Plantings of an ozonesensitive hybrid poplar clone {Populus maximowizii x trichocarpa, clone NE 388) were established in 1972 at various distances and directions from the power plants. Foliar injury caused by ambient ozone was evaluated annually from 1973 to 1990 in early to mid- August. Data are presented for the 12-year period, 1979 to 1990 inclusive, for which the most complete data sets were available. Injury from ambient ozone varied spatially and temporally, but with little relationship to power plant location. There was an apparent negative relationship between emission trends and ozone-induced symptoms, but only for one power plant. The correlation between annual mean levels of ozone-induced stipple and frequency of days (per year) with a 1-hr ozone maximum exceeding 0.04 ppm was weak, but significant. Ozone-induced bifacial necrosis was not observed on the foliage of the hybrid poplar during the drought year of 1988 in spite of record high levels of ozone; however, ozoneinduced stipple was observed.  相似文献   
18.
Particulate matter < or =10 microm (PM10) emissions due to wind erosion can vary dramatically with changing surface conditions. Crust formation, mechanical disturbance, soil texture, moisture, and chemical content of the soil can affect the amount of dust emitted during a wind event. A refined method of quantifying windblown dust emissions was applied at Mono Lake, CA, to account for changing surface conditions. This method used a combination of real-time sand flux monitoring, ambient PM10 monitoring, and dispersion modeling to estimate dust emissions and their downwind impact. The method identified periods with high emissions and periods when the surface was stable (no sand flux), even though winds may have been high. A network of 25 Cox sand catchers (CSCs) was used to measure the mass of saltating particles to estimate sand flux rates across a 2-km2 area. Two electronic sensors (Sensits) were used to time-resolve the CSC sand mass to estimate hourly sand flux rates, and a perimeter tapered element oscillating microbalance (TEOM) monitor measured hourly PM10 concentrations. Hourly sand flux rates were related by dispersion modeling to hourly PM10 concentrations to back-calculate the ratio of vertical PM10 flux to horizontal sand flux (K-factors). Geometric mean K-factor values (K(f)) were found to change seasonally, ranging from 1.3 x 10(-5) to 5.1 x 10(-5) for sand flux measured at 15 cm above the surface (q15). Hourly PM10 emissions, F, were calculated by applying seasonal K-factors to sand flux measurements (F = K(f) x q15). The maximum hourly PM10 emission rate from the study area was 76 g/m2 x hr (10-m wind speed = 23.5 m/sec). Maximum daily PM10 emissions were estimated at 450 g/m2 x day, and annual emissions at 1095 g/m2 x yr. Hourly PM10 emissions were used by the U.S. Environmental Protection Agency (EPA) guideline AERMOD dispersion model to estimate downwind ambient impacts. Model predictions compared well with monitor concentrations, with hourly PM10 ranging from 16 to over 60,000 microg/m3 (slope = 0.89, R2 = 0.77).  相似文献   
19.
Measurements of OH, H2SO4, and MSA at South Pole (SP) Antarctica were recorded as a part of the 2003 Antarctic Chemistry Investigation (ANTCI 2003). The time period 22 November, 2003–2 January, 2004 provided a unique opportunity to observe atmospheric chemistry at SP under both natural conditions as well as those uniquely defined by a solar eclipse event. Results under natural solar conditions generally confirmed those reported previously in the year 2000. In both years the major chemical driver leading to large scale fluctuations in OH was shifts in the concentration levels of NO. Like in 2000, however, the 2003 observational data were systematically lower than model predictions. This can be interpreted as indicating that the model mechanism is still missing a significant HOx sink reaction(s); or, alternatively, that the OH calibration source may have problems. Still a final possibility could involve the integrity of the OH sampling scheme which involved a fixed building site. As expected, during the peak in the solar eclipse both NO and OH showed large decreases in their respective concentrations. Interestingly, the observational OH profile could only be approximated by the model mechanism upon adding an additional HOx radical source in the form of snow emissions of CH2O and/or H2O2. This would lead one to think that either CH2O and/or H2O2 snow emissions represent a significant HOx radical source under summertime conditions at SP. Observations of H2SO4 and MSA revealed both species to be present at very low concentrations (e.g., 5 × 105 and 1 × 105 molec cm?3, respectively), but similar to those reported in 2000. The first measurements of SO2 at SP demonstrated a close coupling with the oxidation product H2SO4. The observed low concentrations of MSA appear to be counter to the most recent thinking by glacio-chemists who have suggested that the plateau's lower atmosphere should have elevated levels of MSA. We speculate here that the absence of MSA may reflect efficient atmospheric removal mechanisms for this species involving either dynamical and/or chemical processes.  相似文献   
20.
The cost effectiveness of catchment-wide funding for the environmental remediation of urban waterways on the scale of a major metropolitan catchment is examined considering the typical land-use and pollutant-export characteristics of urban catchments. The evaluation is performed by comparing the effectiveness of the major stormwater treatment modes for the pollutants of concern with the proportion of pollutant export to which the measure applies. The heavy metals copper, lead, and zinc in the aqueous phase or bound to fine particulates are identified as representative of the pollutants of concern in drainage from urban catchments. The analysis suggests that these priority pollutants are predominantly (79–87%) derived from runoff from residential property and roads as disseminated urban surfaces. Analysis of a specific case of catchment-wide funding of stormwater remediation in the Sydney Harbour catchment, Australia reveals that the funding allocation cannot be expected to have achieved reductions in the loads of priority pollutants due to the types of treatment measures implemented and the sources addressed. The apportionment of funding in better accordance with the maximum potential effectiveness of stormwater treatment modes and the pollutant-export characteristics of urban catchments could thus be expected to achieve a more cost-effective result from such funding initiatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号